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Periodic cylindrical surface solution for fluid bilayer membranes

Zhang Shao-guang and Ou-Yang Zhong-can
Institute of Theoretical Physics, Academia Sinica, P.O. Box 2735, Beijing 100080, China
(Received 21 November 1995)

The shape equation of cylindrical surfaces for lipid bilayer membranes expressed by the Gaussian maps of
their cross sections is given. General cylindrical surface solution has been obtained for the case of Ap =0. This
is the first case found that can be solved for the general shape equation. With this solution we show two kinds
of periodic surface solutions to the general shape equation for fluid bilayer membranes.

PACS number(s): 82.70.y, 87.10.+e, 02.30.Hq

Amphiphilic molecules, such as phospholipids, asemble
into bilayer membranes in water with the polor head groups
in contact with water and the hydrocarbon chains facing in-
ward. At low concentration, these bilayers tend to form
vesicles [1], but at high enough concentration vesicles will
transform into extended bilayers [2].

The equilibrium shapes of the membranes are determined
by minimizing their shape energy [3]

1
F= é_kc Sg (c1+cz-—co)2dA+Apf dV+ %dA. (1)

Here ¢; and ¢, are the two principal curvatures, ¢ is the
spontaneous curvature, which serves to describe the intrinsic
asymmetry in the lipid composition or different aqueous en-
vironments on the two sides of the bilayer, k. is the bending
rigidity, and dA and dV are the area and the volume element,
respectively. The pressure difference Ap =(p,—p;) be-
tween outer (p,) and inner media (p;) and the tensile stress
N\ serve as the Lagrange multipliers to take account of the
constraints of constant volume and area.

The general shape equation has been derived via varia-
tional calculus [4]

Ap—2NH+k(2H~+co)(2H?*—2K—coH)+2kV H=0,
(2)

where H and K are the mean and the Gaussian curvatures,
respectively, and V2 is the Laplace-Beltrami operator. This
equation is a high-order nonlinear partial differential equa-
tion. For a long time, the known analytic solutions to this
equation have been restricted to spheres and circular cylin-
ders. Except the well known case of H=0, which represents
the shapes of soap films [5] and the case of H= const, which
represents the shapes of soap bubbles [6], it appears that no
rigorous solution was known until the prediction of the Clif-
ford torus solution by Ou Yang [7] and was experimentally
verified by Mutz and Bensimon [8] later. Recently, two new
axisymmetric solutions have been reported [9].

Circular cylinder is the only known cylinder solution to
this equation. It has been shown under certain conditions, the
circular cylinder may destabilize and tranform into other
shapes [4]. Considering various cylindrical surfaces found in
lipid bilayer membranes, it seems necessary to study this
one-dimensional case more carefully.

The nonparametric form of a surface is
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z=f(x.y).

If the equation does not involve one of the coordinates, say
y, then the equation becomes

z=f(x). 3)

Such a surface is called a cylinder and Eq. (3) defines the
curve of its cross section. The curvature of the curve is given
by

ZXX

C1=>T—"—""7337-
1 (]+Z§)3/2

If we introduce tany(x)= —z,, here (x) is the angle be-
tween the x axis and the tangent to the curve at pomt X, €y
expressed by the Gauss map of the curve is

d
c1=cos¢d—f.

The mean and the Gaussian curvature of this surface are
represented by

H= : @ K=0 4
=~ eosyg-. K=0, @

V2H can now be written as

3 2
V2H=— %coscﬁ[—cosZ 1//(%) -2 sz'// a4 dij
3
+cos w—d—g} )

Substituting Eq. (4) and Eq. (5) into the general shape equa-

- tion (2), we obtain the shape equation of cylindrical surfaces

d*y dy

dx? dx

d3
cos’ ll’( dxf) —2 cosi sin2 y—

1 dw
Ecos 3y—cosyp sin®y Tx

N dy Ap
—(;{—C——F—Z—)cos ——=0. 6)

dx  k,
As an example, let us consider the case of a circular cylinder,

4206 © 1996 The American Physical Society



53 BRIEF REPORTS

. lﬂ x
sing= —
Po
where p is the radius of the circular cylinder. Equation (6)
now gives

k
Appy+Npi+ 5 (copg—1)=0, @

which is just the relation derived in [4]. Equation (6) is a
nonlinear ordinary differential equation of the third order,
however, for the case of Ap =0, it can be linearized. For this
purpose, we introduce d¢/dx= *+/g(¢), then the equation

becomes
\/_ d°g
dz//2

2

1
—4 tamﬁ —(1—2 tan®¢) g — —sec?yy|=
ay xg

®)

where for convenience, we have introduced the parameter
x¢ defined by

x+c§) 1 0
wt2) T ©)

We note that \/EZ *diy/dx=0 is just the trivial case of a
plane. If dy/dx+# 0, we have

2

d(// —4 tanz//

1
dlﬂ —(1-2 tan2¢)g=;gsec2¢/f. (10)

Two linearly independent solutions to the homogeneous
equation corresponding to Eq. (10) are found to be
siny/cos?y and 1/cosy. Recall that the circular cylinder is a
particular solution to Eq. (10), the general solution to Eq.
(10) is therefore

1 sinyr
1

g= (11)

x(z)cos2 17 cos?y 2cosy’
where C; and C, are arbitrary constants. Let C1=k1/x(2),
C,=k,/x}; the general solution of Eq. (6) in the case of

Ap=0 can be written as
Y= const

or

cosyd iy X
+ =—+C. (12)
V1 +ksing+kycosyy  Xo

In general, the integral in Eq. (12) is reducible to elliptic
integrals. Equation (12) defines various interesting cross sec-
tions, which will be discussed elsewhere. We point out here
that only for particular parameters Eq. (12) represents closed
shapes (for example, the circular cylinder corresponds to the
case of k;=k,=0); the general shapes of the solution in the
case of Ap=0 are not closed and the case of k,=0 repre-
sents two important and interesting kinds of periodic shapes.
With substitution of = 1/k,,k,=0, Eq. (12) gives
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FIG. 1. One period of the cross sections of the undulation cy-
lindrical surfaces for different values of a. The inset shows three
periods of this undulation shape for a=0.01. Note that the vertical
axis is the X axis.

. 1 [x 2
s1m//=2t—a §3+C —-a. (13)

Here a and C are dimensionless constants and with the
proper choice of the origin of the x axis we can take C=0.
For 0<a<1, Eq. (13) describes undulation surfaces and the
amplitude of the surface is X, =2+/(a+ 1) ax,. By introduc-
ing a new variable X=x/x,, Eq. (13) now can be written in
the following form:
sing=(a+1)X’—a (—1sX=<1). (14)
The contour of the cross section can be obtained by cal-
culating the following integral:

X
Z(X)-Z(X')=- Jxltan¢ dX, (15)

where Z=z/x,, so both the x and z axes are scaled by
x4 . In Fig. 1 we display one period of the contour of the
cross sections for different values of . We can see that the
shapes and periods of the cross sections change with a. The
period (actually period-amplitude ratio) of the cross section
reaches its'maximum value as a— 0" and the shape equaton
approaches

sing=X2. (16)

The maximum period T is

1 12
T=2f dt=24. 17
N
We note that the shape shown in the inset of Fig. 1 was
observed by Harbich and Helfrich [10] in the experiment of

the swelling of egg lecithin in excess water. But they did not
give an explanation of the appearance of this wavy kind of
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FIG. 2. Half period of the cross sections of the nodoidlike cy-
lindrical surfaces for different . The inset shows three periods of
this kind of surface for = 1.01. Note that the vertical axis is the
Z axis.

surface. We now realize that such a kind of surface is just a
solution to the general shape equation.

For a>1, Eq. (13) represents another kind of period sur-
face shown in the inset of Fig. 2. Choose C=2a, Eq. (13)
can be rewritten in the following form:

1
sing= Z—;(X+2a)2—a, (18)

where X=x/xy, and 2\ (a—1)a—2a<X<2\(at+1l)a

—2a. In Fig. 2 we show the half period of this kind of sur-
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face for different . We find when a— o this kind of surface
degenerates to a circular cylinder with radius of X=1 be-
cause
2

—a=X, (19)

. . ( X
sing= igr:oa e +1
where —1<X=<1 for 2\J(a—1)a—2a and 2V(a+ 1)«
—2a tend to — 1 and 1, respectively.

We know that ordered bicontinuous structures can be ex-
pressed by triply periodic minimal surfaces in the case of
Ap=0 for it is easy to check that minimal surfaces are so-
lutions to the general shape equation (2) in the case of
Ap=0. Triply periodic minimal surfaces were discovered
last century by Schwarz [11] and many new examples were
given more recently by Schoen [12]. Just as Schwarz’s
primitive and diamond minimal surfaces can be obtained by
fusion of droplets on a primitive or diamond lattice [13],
Figs. 1 and 2 actually display two ways for tubes to trans-
form into one-dimensional extended structures. We hope the
shape shown in the inset of Fig. 2 may be demonstrated by
experiment soon.

In conclusion, we have derived the general cylindrical
surface solution in the case of Ap =0. With it we have shown
two kinds of periodic solutions to the general shape equation.
The surfaces degenerate to circular cylinders in certain lim-
iting cases. One interesting point is that the cross sections of
our surfaces are quite similar to the contour of the unduloid-
like and nodoidlike solutions for axisymmetric membranes
[9]. At last we point out here that we have also studied the
case of AP #0, which is more complicated and in general is
not integrable in terms of elementary functions, algebraic or
classical transcendental [14].
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